11. Schottky-Kronecker forms and hyperelliptic polylogarithms
Joint with Konstantin Baune, Johannes Broedel, Egor Im and Artyom Lisitsyn
J. Phys. A: Math. Theor. 57 445202 (2024)
arXiv:2406.10051 [hep-th]

10. Elliptic hyperlogarithms
Joint with Benjamin Enriquez
Canad. J. Math., accepted (2024)
arXiv:2307.01833 [math.AG]

9. Analogues of hyperlogarithm functions on affine complex curves
Joint with Benjamin Enriquez
Publ. Res. Inst. Math. Sci., accepted (2024)
arXiv:2212.03119 [math.AG]

8. Construction of Maurer-Cartan elements over configuration spaces of curves
Joint with Benjamin Enriquez
arXiv:2110.09341 [math.AG]

7. Building blocks of closed and open string amplitudes
Joint with Pierre Vanhove
Proceedings of Science Vol. 383 (2022) MA2019 Chap. 022
arXiv:2007.08981 [hep-th]

6. Genus-zero and genus-one string amplitudes and special multiple zeta values
Joint with Don Zagier
Commun. Number Theory Phys. Vol. 14 (2020), no. 2, 413–452
arXiv:1906.12339 [math.NT]

5. Single-valued hyperlogarithms, correlation functions and closed string amplitudes
Joint with Pierre Vanhove
Adv. Theor. Math. Phys. Vol. 26 no. 2 (2022)
arXiv:1812.03018 [hep-th]

4. Modular and holomorphic graph functions from superstring amplitudes
Conference Proceedings “Elliptic integrals, elliptic functions and modular forms in quantum field theory”, Chap. 18, 459–484 (Springer-Verlag Wien)
arXiv:1807.04506 [math-ph]

3. From elliptic multiple zeta values to modular graph functions: open and closed strings at one loop
Joint with Johannes Broedel and Oliver Schlotterer
J. High Energy Phys. (01):155, 2019
arXiv:1803.00527 [hep-th]

2. Single valued multiple zeta values in genus 1 superstring amplitudes
Commun. Number Theory Phys. Vol. 10 (2016), no. 4, 703–737
arXiv:1512.05689 [hep-th]

1. Counting invertible potentials
Joint with Ana Ros Camacho
Appendix to “Strangely dual orbifold equivalence I” by R. Newton and A. Ros Camacho
Journal of Singularities 14 (2016), 34-51
arXiv:1509.08069 [math.QA]